Inverse problems for deformation rings
نویسندگان
چکیده
منابع مشابه
Inverse problems for Aharonov - Bohm rings 3
The inverse problem for Schrödinger operators on metric graphs is investigated in the presence of magnetic field. Graphs without loops and with Euler characteristic zero are considered. It is shown that the knowledge of the Titchmarsh-Weyl matrix function (Dirichlet-to-Neumann map) for just two values of the magnetic field allows one to reconstruct the graph and potential on it provided a certa...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Eisenstein deformation rings
We prove R = T theorems for certain reducible residual Galois representations. We answer in the positive a question of Gross and Lubin on whether certain Hecke algebras T are discrete valuation rings. In order to prove these results we determine (using the theory of Breuil modules) when two finite flat group schemes G and H of order p over an arbitrarily tamely ramified discrete valuation ring ...
متن کاملA New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملInverse spectral problems for Sturm-Liouville operators with transmission conditions
Abstract: This paper deals with the boundary value problem involving the differential equation -y''+q(x)y=lambda y subject to the standard boundary conditions along with the following discontinuity conditions at a point y(a+0)=a1y(a-0), y'(a+0)=a2y'(a-0)+a3y(a-0). We develop the Hochestadt-Lieberman’s result for Sturm-Lio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2013
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-2013-05848-5